Home Page News Search Contact Us Language Bar فارسی English
Wiring Riddle No.10 - Hipot test
what are the recommended test voltages?
For hipot test what are the test voltages(ac/dc) for various types of cables(pvc/xlpe/MICC etc) of different rated voltages(220/400/660/1000/4160/6600/11000/33000 etc)recommended and the duration of test as well as the maximum leakage current allowed in each case?.
Author : Sinnadurai Sripadmanaban - From: Srilanka
Sat, November 19th, 2011 - 10:15
Any test that uses the test source voltage to be higher than the in-service operating voltage could be classified as destructive test because during testing the cable insulation will be subjected to a higher voltage than what it will see in service. Therefore, all hi-pot withstand tests would fall into this category. However, during a hi-pot test, if the voltage is applied in a steps and the leakage current is monitored, then the test may be classified as being nondestructive. The reasoning for this is that the test can be aborted before the insulation gets to a failure point since at every step of voltage application the leakage current is being monitored and evaluated before proceeding to the next step. An application of this test procedure is the step-voltage DC hi-pot withstand test. The same cannot be said of AC hi-pot withstand test since there is no way to evaluate the leakage current, therefore this test would be considered as go-no-go test and considered to be destructive.

Insulation Resistance and DC  Hi-Pot Testing
In the past, insulation resistance and DC HV (hi-pot) tests have been used for acceptance (proof) and maintenance testing of cables. When testing cables with DC voltage, it should be understood that DC voltage creates within the cable insulation system an electrical field determined by the conductance and the geometry of the cable insulation system. However, the normal service voltage applied to cable is AC 60 Hz voltage, thus during normal service conditions the AC voltage creates an electrical field that is determined by the dielectric constant (capacitance) of the insulation system. Therefore the electric stress distribution with DC voltage will be different than with AC voltage. Further, conductivity is influenced by temperature to a greater extent rather than the dielectric constant, therefore comparative electric stress distribution under DC and AC voltages will be affected differently by changes in temperature in the insulation. The DC voltage tests are effective in detecting failures that are triggered by thermal mechanism. The value of the DC voltage diagnostic tests for extruded-type insulation are somewhat limited because failures under service AC voltage conditions are most likely to be caused by PDs in the voids of extruded insulation rather than by thermal mechanism. On the other hand, the DC voltage diagnostic tests are very meaningful for laminated-type insulation system where the failure is most likely to be triggered by thermal mechanism. The current trend is to minimize the use the DC hi-pot tests on extruded insulation for the reasons discussed above and because of potential adverse charging effects of DC hi-pot tests on extruded insulation.

AC  Hi-Pot Testing
Cables and accessories may also be field tested with 60 Hz AC voltage, although this is normally not done because of the requirement for heavy, bulky, and expensive test equipment that may not be readily available or transportable to a field site. The most common field tests performed on cables are DC hi-pot or VLF tests, such as one-tenth of hertz frequency tests in lieu of AC hi-pot tests. However, if AC hi-pot acceptance and maintenance tests are to be conducted on cables, then it should be borne in mind that this test is not very practical in the field. Further, the AC hi-pot test can only be conducted as go-no-go test, and therefore it may cause extensive damage should the cable under test fails, i.e., a disruptive discharge through the insulation takes place during the test. On the other hand, AC hi-pot test has a distinct advantage over other test methods of stressing the insulation comparably to normal operating voltage. Further, this test replicates the factory test performed on the new cable. When performing the AC 60 Hz hi-pot test consideration should be given to the adequacy of the test equipment for successfully charging the test specimen. The AC test equipment should have adequate volt-ampere (VA) capacity to supply the required cable charging current requirements of the cable under test. The VA capacity of the AC hi-pot test equipment may be determined by the following formula.
VA =2πfcE2 or kVA =2πfcE2 ×10-3
c is capacitance (μf/mile)
f is the frequency (Hz)
E  is the test voltage (kV) of the test set
The test voltage values recommended for acceptance and maintenance tests are 80% and 60%, respectively, of the final factory test voltage.

Recent studies of cable failures indicate that the DC over potential test may be causing more damage to some cable insulation, such as cross-link polyethylene, than the benefit obtained from such testing. It can indicate the relative condition of the insulation at voltages above or near operating levels. This test can be used for identification of weakness in the cable insulation and can also be used to break down an incipient fault. Generally, it is not recommended that this test be used for breakdown of incipient faults even though some test engineers use it for this purpose. Therefore, the incipient fault breakdown probability should be anticipated before and during the hi-pot test. The impending cable failure will usually be indicated by sudden changes in the leakage current, and before insulation is damaged, the test can be stopped. The test voltage values for DC hi-pot tests are based upon final factory test voltage, which is determined by the type and thickness of insulation, the size of conductors, the construction of cable, and applicable industry standards. The DC test values corresponding to AC factory proof test voltages specified by the industry standards are usually expressed in terms of the ratio of DC to AC voltage for each insulation system. This ratio is designated as K, which when multiplied by the acceptance test factor of 80% and maintenance factor of 60% yields the conversion factors to obtain the DC test voltages for hi-pot tests. These recommended test voltage conversion factors are shown in Table below.

Also, the IEEE standard 400.1–2007 lists the voltage values for conducting hi-pot acceptance and maintenance tests in the field for laminated shielded power cables, which are shown in Table below.

Many factors should be considered in selecting the right voltage for existing cables that are in service. As a general rule, for existing cables, the highest values for maintenance should not exceed 60% of final factory test voltage, and the minimum test value should be not less than the DC equivalent of the AC operating voltage. If the cable cannot be disconnected from all the connected equipment, the test voltage should be reduced to the voltage level of the lowest rated equipment connected.

Voltage versus Leakage Current Test (Step-Voltage Test)
In this test, the voltage is raised in equal steps and time is allowed between each step for leakage current to become stable. The current is relatively high as a voltage is applied owing to capacitance charging current and dielectric absorption currents. As time passes, these transient currents become minimum with the steady-state current remaining, which is the actual leakage current and a very small amount of absorption current. At each step of voltage, the leakage current reading is taken before proceeding to the next step. Usually, it is recommended that at least eight equal steps of voltage be used and at least 1–4 min be allowed between each step. The leakage current versus voltage are then plotted as a curve. As long as this plotted curve is linear for each step, the insulation system is in good condition. At some value of step voltage, if the leakage current begins to increase noticeably, an increase in the slope of the curve will be noticed, as shown in Figure below. If the test is continued beyond this test voltage, the leakage current will increase even more rapidly and immediate breakdown may occur in the cable insulation. Unless breakdown is desired, the test should be stopped as soon as the increase of slope is noticed in the voltage versus leakage current curve.
Maximum leakage current allowable for new cables acceptance can be determined from the ICEA formula for minimum allowable insulation resistance discussed earlier. The formula for leakage current then can be written as follows:

Leakage Current versus Time Test
When the final test voltage of leakage current versus voltage test is reached, it can be left on for at least 5 min, and the leakage current versus time can be plotted for fixed intervals of time as the leakage current during this step reduces from an initial high value to a steady-state value. A curve for good cables will generally indicate a continuous decrease in leakage current with respect to time or steady-state value without any increase of current during the test. This curve is shown in Figure below.

Author : Hamid - From: Iran
Submit Your Answer

Change Language :